Advertisements
Advertisements
Question
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
Options
0
1
-1
3
Solution
We have to find `a^2/(bc)+ b^2 /(ca) +c^2 /(ab)`
Given a + b + c = 0
Using identity `a^3 +b^3 +c^3 -3abc = (a+b+c)(a^2 +b^2 +c^2 -ab -bc -ca)`
`a^3 +b^3 +c^3 -3abc = 0 (a^2 +b^2 +c^2 -ab -bc -ca)`
`a^3 +b^3 +c^3 - 3abc = 0 `
`a^3 +b^3 + c^3 = 3abc`
`a^3 /(abc)+ b^3/(abc) +c^3 /(abc ) = 3`
`((a xx a xx a)/(a xx b xx c))+ ((b xx b xx b)/(a xx b xx c))+((c xx c xx c)/(a xx b xx c)) = 3 `
`a^2 /(abc)+ b^2/(abc) +c^2 /(abc ) = 3`
Hence the value of `a^2 /(bc)+ b^2/(ac) +c^2 /(ab ) = 3`.
APPEARS IN
RELATED QUESTIONS
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Write in the expanded form:
`(m + 2n - 5p)^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
Evaluate of the following:
(9.9)3
Evaluate of the following:
(99)3
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If a + b = 8 and ab = 6, find the value of a3 + b3
Evaluate:
253 − 753 + 503
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
Simplify by using formula :
(5x - 9) (5x + 9)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)