Advertisements
Advertisements
Question
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
Solution
Given \[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
We shall use the identity `(a-b)(a^2 + ab+ b^2) = a^3 - b^3`
We can rearrange the ` (3/5 - 5/y) (9^2/x^2 + 25/y^2 + 15/(xy))`as
` = ((3/x - 5/y) ((3/x)^2 + (5/y)^2 + (3/x)(5/y))`
` = (3/x)^3 - (5/y)^3 `
\[= \left( \frac{3}{x} \right) \times \left( \frac{3}{x} \right) \times \left( \frac{3}{x} \right) - \left( \frac{5}{y} \right) \times \left( \frac{5}{y} \right) \times \left( \frac{5}{y} \right)\]
\[ = \frac{27}{x^3} - \frac{125}{y^3}\]
Hence the Product value of `(3/x - 5/y) (9^2/x^2 + 25/y^3 + 15/(xy))`is `27/x^3 - 125/y^3`.
APPEARS IN
RELATED QUESTIONS
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
Evaluate of the following:
`(10.4)^3`
Evaluate of the following:
(598)3
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
Use identities to evaluate : (502)2
Evalute : `( 7/8x + 4/5y)^2`
If a - b = 7 and ab = 18; find a + b.
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Use the direct method to evaluate :
(4+5x) (4−5x)
Use the direct method to evaluate :
(2a+3) (2a−3)
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Evaluate: 203 × 197
Simplify by using formula :
(5x - 9) (5x + 9)
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
Simplify:
(4x + 5y)2 + (4x - 5y)2
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz