Advertisements
Advertisements
Question
Evaluate: 203 × 197
Solution
203 × 197
= (200 + 3) (200 − 3)
= (200)2 − (3)2 ......[ ∵ (a − b) (a + b) = a2 − b2]
= 40000 − 9
= 39991
APPEARS IN
RELATED QUESTIONS
Evaluate the following product without multiplying directly:
95 × 96
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Evaluate the following using identities:
`(2x+ 1/x)^2`
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).