Advertisements
Advertisements
Question
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Solution
`"a" + (1)/"a" = 2`
`("a" + 1/"a")^2`
= `"a"^2 + (1)/"a"^2 + 2`
⇒ (2)2 = `"a"^2 + (1)/"a"^2 + 2`
⇒ `"a"^2 + (1)/"a"^2`
= 4 - 2
= 2
`("a" + 1/"a")^3`
= `"a"^3 + (1)/"a"^3 + 3("a" + 1/"a")`
⇒ (2)3 = `"a"^3 + (1)/"a"^3 + 3(2)`
⇒ `"a"^3 + (1)/"a"^3`
= 8 - 6
= 2
`("a"^2 + 1/"a"^2)^2`
= `"a"^4 + (1)/"a"^4 + 2`
⇒ (2a)2 = `"a"^4 + (1)/"a"^4 + 2`
⇒ `"a"^4 + (1)/"a"^4`
= 4 - 2
= 2
Thus, `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
If x + y = 9, xy = 20
find: x - y
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.