English

If a + 1 a = 2 , Then Show that a 2 + 1 a 2 = a 3 + 1 a 3 = a 4 + 1 a 4 - Mathematics

Advertisements
Advertisements

Question

If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`

Sum

Solution

`"a"  + (1)/"a" = 2`

`("a" + 1/"a")^2`

= `"a"^2 + (1)/"a"^2 + 2`

⇒ (2)2 = `"a"^2 + (1)/"a"^2 + 2`

⇒ `"a"^2 + (1)/"a"^2`
= 4 - 2
= 2

`("a" + 1/"a")^3`

= `"a"^3 + (1)/"a"^3 + 3("a" + 1/"a")`

⇒ (2)3 = `"a"^3 + (1)/"a"^3 + 3(2)`

⇒ `"a"^3 + (1)/"a"^3`
= 8 - 6
= 2

`("a"^2 + 1/"a"^2)^2`

= `"a"^4 + (1)/"a"^4 + 2`

⇒ (2a)2 = `"a"^4 + (1)/"a"^4 + 2`

⇒ `"a"^4 + (1)/"a"^4`
= 4 - 2
= 2

Thus, `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Expansions - Exercise 4.2

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 4 Expansions
Exercise 4.2 | Q 12
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×