Advertisements
Advertisements
Question
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
Options
1
-1
- \[\frac{1}{2}\]
0
Solution
Given `a/b+b/a = -1`
Taking Least common multiple in `a/b +b/a = -1 `we get,
` a/b + b/a -1`
`(axx a)/(b xx a)+(bxxb)/(a xx b) = -1`
`a^2/(ab) + b^2/(ab) = -1`
`(a^2 + b^2)/(ab) = -1 `
`a^2+b^2 = -1 xx ab`
`a^2 +b^2 = -ab`
`a^2 + b^2 + ab = 0`
Using identity `a^3 - b^3= (a-b) (a^2 +ab +b^2)`
`a^3 -b^3 = (a-b)(a^2 + ab+b^2)`
`a^3 -b^3 = (a-b)(0)`
`a^3 - b^3 = 0`
Hence the value of `a^3 - b^2` is 0.
APPEARS IN
RELATED QUESTIONS
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Write in the expanded form: `(x + 2y + 4z)^2`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
Evalute : `( 7/8x + 4/5y)^2`
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Use the direct method to evaluate :
(3b−1) (3b+1)
Evaluate: (9 − y) (7 + y)
Expand the following:
(3x + 4) (2x - 1)
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz