English

If a B + B a = − 1 Then A3 − B3 = - Mathematics

Advertisements
Advertisements

Question

If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =

 

Options

  • 1

  • -1

  • \[\frac{1}{2}\]
  • 0

MCQ

Solution

Given  `a/b+b/a = -1`

Taking Least common multiple in  `a/b +b/a = -1 `we get,

` a/b + b/a  -1`

`(axx a)/(b xx a)+(bxxb)/(a xx b) = -1`

`a^2/(ab) + b^2/(ab) = -1`

`(a^2 + b^2)/(ab) = -1 `

             `a^2+b^2 = -1 xx ab`

             `a^2 +b^2 = -ab`

    `a^2 + b^2 + ab = 0`

Using identity  `a^3 - b^3= (a-b) (a^2 +ab +b^2)`

`a^3 -b^3 = (a-b)(a^2 + ab+b^2)`

`a^3 -b^3 = (a-b)(0)`

`a^3 - b^3 = 0`

Hence the value of `a^3 - b^2` is  0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Algebraic Identities - Exercise 4.7 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 4 Algebraic Identities
Exercise 4.7 | Q 10 | Page 30

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×