Advertisements
Advertisements
Question
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
Options
5
10
15
none of these
Solution
In the given problem, we have to find the value of `x + 1/x`
Given `x^3 + 1/x^3 = 110`
We shall use the identity `(a + b)^3 = a^3 + b^3 + 3ab (a+b)`
`(x+1/x)^3 = x^3 + 1/x^3 + 3 xx x xx 1/x(x+ 1/x)`
`(x+1/x)^3 = x^3 + 1/x^3 + 3 (x+ 1/x)`
Put `x + 1/x = y`we get,
`(y)^3 = x^3 + 1/x^3 + 3 (y)`
Substitute y = 5 in the above equation we get
`(5)^3 = x^3 + 1/x^3 + 3(5)`
`125 = x^3 + 1/x^3 + 15`
`125 - 15 = x^3 + 1/x^3`
`110 = x^3 + 1/x^3`
The Equation `(y)^3 = x^3 + 1/x^3 + 3(y)` satisfy the condition that `x^3 + 1/x^3 = 110`
Hence the value of `x+ 1/x` is 5.
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
Evaluate the following using suitable identity:
(102)3
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Evaluate the following using identities:
117 x 83
Simplify the following:
0.76 x 0.76 - 2 x 0.76 x 0.24 x 0.24 + 0.24
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
Simplify of the following:
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Expand the following:
(x - 5) (x - 4)
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
Factorise the following:
9y2 – 66yz + 121z2
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.