Advertisements
Advertisements
Question
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
Options
5
4
3
2
Solution
In the given problem, we have to find the value of `x-1/x`
Given `x^3 - 1/x^3 = 14`
We shall use the identity `(a-b)^3 = a^3 -b^3-3ab (a-b)`
`(x-1/x)^3 = x^3 - 1/x^3 - 3 xx x xx 1/x(x-1/x)`
`(x = 1/x)^3 = x^3 - 1/x^3 -3 (x-1/x)`
Put `x- 1/x = y` we get,
`(y)^3 = x^3 -1/x^3 -3(y)`
Substitute y = 2 in above equation we get,
`(2)^3 = x^3 -1/x^3 - 3 (2) `
`8 = x^3 - 1/x^3 -6`
`8+6 = x^2 -1/x^3`
`14 = x^3 - 1/x^3`
The Equation `(y )^3 = x^3 - 1/x^3 -3(y)`satisfy the condition that `x^3 - 1/x^3 = 14`
Hence the value of `x - 1 /x`is 2
APPEARS IN
RELATED QUESTIONS
Evaluate the following product without multiplying directly:
103 × 107
Evaluate the following using suitable identity:
(102)3
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Evaluate following using identities:
991 ☓ 1009
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
Evaluate of the following:
(9.9)3
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If a + b = 8 and ab = 6, find the value of a3 + b3
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
Use identities to evaluate : (101)2
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Evaluate the following :
7.16 x 7.16 + 2.16 x 7.16 + 2.16 x 2.16
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.