Advertisements
Advertisements
Question
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
Options
x16 − y16
x8 − y8
x8 + y8
x16 + y16
Solution
Given `(x-y)(x+y)(x^2 +y^2)(x^4 + y^4)`
Using the identity `(x-y) (x+y) = x^2 - y^2`
`(x-y)(x+y)(x^2 +y^2)(x^4 + y^4) = (x-y)(x+y)(x^2 +y^2)(x^4 + y^4)`
` = (x^2-y^2)(x^2 + y^2)(x^4 + y^4)`
`= [(x^2)^2 - (y^2)^2][x^4 +y^4]`
` = [(x^4)^2 - (y^4)^2]`
` = [x^8 - y^8]`
Hence `(x-y)(x+y)(x^2 +y^2)(x^4 + y^4)` is equal to ` x^8 - y^8`.
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(x + 8) (x – 10)
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
`(10.4)^3`
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Find the square of : 3a + 7b
Use identities to evaluate : (101)2
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate the following without multiplying:
(999)2
If p + q = 8 and p - q = 4, find:
p2 + q2
Evaluate the following :
7.16 x 7.16 + 2.16 x 7.16 + 2.16 x 2.16
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.