Advertisements
Advertisements
Question
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Solution
In the given problem, we have to simplify equation
Given (2x − 5y)3 − (2x + 5y)3
We shall use the identity `a^3 - b^3 = (a-b)(a^2+ b^2 + ab)`
Here ` a= (2x - 5y), b = (2x + 5y)`
By applying the identity we get
` = (2x - 5y - 2x 5y)[(2x - 5y)^2 +(2x + 5y)^2 + ((2x - 5y) xx (2x + 5y))]`
` = ( 2x - 5y - 2x - 5y)[(2x xx 2x + 5y xx 5y - 2 xx 2x xx 5y) + (2x xx 2x + 5yxx 5y + 2 xx 2x xx 5y) + ( 4x^2 - 25y^2)]`
` = ( - 10y)[(4x^2 + 25y^2 - 20xy)+ (4x^2 + 25y^2 + 20xy ) + 4x^2 + 25y^2 ]`
` = ( - 10y)[4x^2 + 25y^2 - 20xy+ 4x^2 + 25y^2 + 20xy + 4x^2 -25y^2 ]`
By rearranging the variable we get,
` = ( - 10y)[4x^2 + 4x^2 + 4x^2 + 25y^2]`
` = - 10y xx [12x^2 + 25y^2]`
`= -120x^2y - 250y^3`
Hence the simplified value of `2x - 5y^3 -(2x + 5y)^3`is `-120x^2y - 250y^3`.
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Evaluate of the following:
(9.9)3
If a + b = 6 and ab = 20, find the value of a3 − b3
If x = −2 and y = 1, by using an identity find the value of the following
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
(a − b)3 + (b − c)3 + (c − a)3 =
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Expand the following:
(m + 8) (m - 7)
Find the squares of the following:
3p - 4q2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.