Advertisements
Advertisements
Question
If a + b = 6 and ab = 20, find the value of a3 − b3
Solution
In the given problem, we have to find the value of `a^3 - b^3`
Given `a-b = ,ab = 20`
We shall use the identity
`a^3 -b^3 = (a-b)^3 3ab (a-b)`
`a^3 -b^3 = (a-b)^3 + 3ab(a-b)`
`a^3 - b^3 = (6)^3 3 xx 20(6)`
`a^3 - b^3 = 216 +360`
`a^3 -b^3 = 576`
Hence the value of `a^3 - b^3`is 576.
APPEARS IN
RELATED QUESTIONS
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate :
(2a+3) (2a−3)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Find the squares of the following:
(2a + 3b - 4c)
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If x + y = 1 and xy = -12; find:
x - y
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Which one of the following is a polynomial?
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
Using suitable identity, evaluate the following:
9992
Expand the following:
(3a – 5b – c)2