Advertisements
Advertisements
प्रश्न
If a + b = 6 and ab = 20, find the value of a3 − b3
उत्तर
In the given problem, we have to find the value of `a^3 - b^3`
Given `a-b = ,ab = 20`
We shall use the identity
`a^3 -b^3 = (a-b)^3 3ab (a-b)`
`a^3 -b^3 = (a-b)^3 + 3ab(a-b)`
`a^3 - b^3 = (6)^3 3 xx 20(6)`
`a^3 - b^3 = 216 +360`
`a^3 -b^3 = 576`
Hence the value of `a^3 - b^3`is 576.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(3a – 7b – c)2
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
If a2 + b2 + c2 − ab − bc − ca =0, then
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
If a + b = 7 and ab = 10; find a - b.
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate :
(2+a) (2−a)
Evaluate the following without multiplying:
(999)2
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`