Advertisements
Advertisements
प्रश्न
If a + b = 8 and ab = 6, find the value of a3 + b3
उत्तर
In the given problem, we have to find the value of `a^3 +b^3`
Given `a+b = 8.ab = 6`
We shall use the identity `a^3 + b^3 = (a+b)^3 ab(a+b)`
`a^3 + b^3 = (a+b)^3- 3ab (a+b)`
`a^3 +b^3 = a(8)^3 - 3 3 xx 6 (8)`
`a^3 +b^3 = 512 - 144`
`a^3+b^3 = 368`
Hence the value of i`a^3 +b^3` is 368 .
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 8) (x – 10)
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Evaluate following using identities:
(a - 0.1) (a + 0.1)
Simplify the following:
0.76 x 0.76 - 2 x 0.76 x 0.24 x 0.24 + 0.24
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
Evaluate the following:
(98)3
Simplify of the following:
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Evaluate: (2 − z) (15 − z)
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Without actually calculating the cubes, find the value of:
(0.2)3 – (0.3)3 + (0.1)3