Advertisements
Advertisements
प्रश्न
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
उत्तर
Given x + y + x = p and xy ++ yz + zx = q
(x + y + x)2
= x2 + y2 + z2 + 2xy + 2yz + 2zx
⇒ x2 + y2 + z2
= (x + y + z)2 - 2xy + 2yz + 2zx
⇒ x2 + y2 + z2
= (x + y + z)2 - 2(xy + yz + zx)
⇒ x2+ y2 + z2
= (p)2 - 2(q)
⇒ x2 + y2 + z2
= p2 - 2q.
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
Write in the expand form: `(2x - y + z)^2`
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Simplify of the following:
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Use identities to evaluate : (502)2
Evaluate: (9 − y) (7 + y)
Using suitable identity, evaluate the following:
1033