Advertisements
Advertisements
प्रश्न
Simplify of the following:
उत्तर
In the given problem, we have to simplify equation
Given \[\left( \frac{x}{2} + \frac{y}{3} \right)^3 - \left( \frac{x}{2} - \frac{y}{3} \right)^3\]
We shall use the identity `a^3 - b^3 = (a-b)(a^2+b^2 + ab)`
Here `a=(x/2 + y/3 ),b= (x/2 - y/3)`
By applying identity we get
`((x/2 +y/3) -(x/2 - y/3)) [(x/2 +y/3)^2 + (x/2 - y/3)^2 - (x/2 +y/3) (x/2 -y/3) ]`
` = (x/2 + y/3 - x/2+y/3) [((x/2)^2+(y/3)^2 + (2xy)/6)^2 + ((x/2)^2+ (y/3)^2 - (2xy)/6)^2 + ((x/2)^2 - (y/3)^2) )]`
`= (2y)/3 [(x^2 /4 + y^2/9 +(2xy)/6) + (x^2/4 + y^2/9 - (2xy)/6) + x^2/4 - y^2/9]`
` =( 2y)/3 [x^2 /4+ y^2/9 + (2xy)/6 + x^2/4 - y^2/9 - (2xy)/6 + x^2 /4 - y^2/9]`
By rearranging the variable we get
` = (2y)/3 [x^2/4 + y^2/9 + x^2/4 + x^2/4]`
` = (2y)/3 [(3x^2)/4 + y^2/9]`
` = (x^2y)/2 + (2y^3)/27`
Hence the simplified value of`(x/2 + y/3)^3 - (x/2 - y/3)^3` is `(x^2y)/2+(2y^3)/27`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Write in the expanded form:
`(2 + x - 2y)^2`
Write in the expanded form: (ab + bc + ca)2
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
If a1/3 + b1/3 + c1/3 = 0, then
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
If a + b = 7 and ab = 10; find a - b.
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Use the direct method to evaluate :
(4+5x) (4−5x)
Evaluate the following without multiplying:
(95)2
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If m - n = 0.9 and mn = 0.36, find:
m2 - n2.
Simplify:
(7a +5b)2 - (7a - 5b)2
Simplify:
(x + y - z)2 + (x - y + z)2