Advertisements
Advertisements
प्रश्न
If a1/3 + b1/3 + c1/3 = 0, then
विकल्प
a + b + c = 0
(a + b + c)3 =27abc
a + b + c = 3abc
a3 + b3 + c3 = 0
उत्तर
Given `a^(1/3) +b^(1/3) +c^(1/3) = 0`
Using identity `a^3 +b^3 +c^3 = 3abc` we get
Here `a= a^(1/3) ,b=b^(1/3) , c = c^(1/3) `
`(a^(1/3))^3 + (b^(1/3))^3 +(c^(1/3))^3 = 3 xx a^(1/3) xx b^(1/3) xx c^(1/3)`
`(3sqrta)^3 +(3sqrtb)^3 +(3sqrtc)^3 =3 xx 3sqrta xx 3sqrtb xx3sqrt c`
`a+b+c = 3 xx 3sqrt a xx 3sqrtb xx 3sqrtc`
Taking Cube on both sides we get,
`(a+b+c)^3 = (3xx 3sqrta xx 3sqrtb xx 3sqrtc)^3`
`(a+b+c)^3 = 27abc`
Hence the value of `a^(1/3) +b^(1/3) +c^(1/3) = 0` is `(a+b+c)^3 = 27abc` .
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Write in the expand form: `(2x - y + z)^2`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
(598)3
Evaluate of the following:
463+343
Find the following product:
If a + b = 7 and ab = 12, find the value of a2 + b2
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
If a − b = −8 and ab = −12, then a3 − b3 =
Use identities to evaluate : (502)2
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Evaluate: (2a + 0.5) (7a − 0.3)
Find the squares of the following:
3p - 4q2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).