Advertisements
Advertisements
प्रश्न
Find the following product:
उत्तर
Given (1 + x) (1 − x + x2)
We shall use the identity `(a+b)(a^2 - ab +b^2) = a^3 + b^3`
We can rearrange the (1 + x) (1 − x + x2)as
` = (1+x)[(1)^2 - (1)(x)+(x)^2]`
` = (1)^3 + (x)^3`
` = (1)xx (1)xx(1) + (x)xx (x)xx(x)`
` = 1+x^3`
Hence the Product value of `(1+x)(1-x+x^2)`is `1+x^2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
95 × 96
Expand the following, using suitable identity:
(3a – 7b – c)2
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Write the following cube in expanded form:
`[3/2x+1]^3`
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
(a − b)3 + (b − c)3 + (c − a)3 =
If a − b = −8 and ab = −12, then a3 − b3 =
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Evalute : `( 7/8x + 4/5y)^2`
Evalute : `((2x)/7 - (7y)/4)^2`
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Expand the following:
(2p - 3q)2
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
Evaluate the following without multiplying:
(1005)2
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.