Advertisements
Advertisements
प्रश्न
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
उत्तर
In the given problem, we have to find the value of `x^3 - 1/x^3`
Given `x^2 + 1/x^3 = 51`
We shall use the identity `(x+y)^2 = x^2 + y^2 +2xy`
Here putting `x^2 + 1/x^3 = 51`,
`(x - 1/x)^2 = x^2 +1/x^2 - 2 xx x xx 1/x`
`(x - 1/x)^2 = x^2 +1/x^2 - 2 xx x xx 1/x`
`(x - 1/x)^2 = 51 - 2`
`(x - 1/x)^2 = 49`
`(x - 1/x) = sqrt49`
`(x - 1/x) =±7`
In order to find `x^3 - 1/x^3`we are using identity `a^3 - b^3 = (a-b)(a^2 +b^2 +ab)`
`x^3 - 1/x^3 = (x-1/x)(x^2 + 1/x^2 + x xx 1/x)`
`x^3 - 1/x^3 = (x-1/x)(x^2 + 1/x^2 + x xx 1/x)`
Here `(x-1/x)= 7`and `x^2 + 1/x^2 = 51`
`= 7 (51 +1)`
` = 7 xx 52`
` = 364`
Hence the value of `x^3 - 1/x^3`is 364.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Expand the following, using suitable identity:
(x + 2y + 4z)2
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
Factorise the following:
27y3 + 125z3
Factorise the following:
64m3 – 343n3
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Find the following product:
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Use identities to evaluate : (101)2
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
If a + b = 7 and ab = 10; find a - b.
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Evaluate: (2a + 0.5) (7a − 0.3)
Expand the following:
(m + 8) (m - 7)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`