Advertisements
Advertisements
प्रश्न
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
उत्तर
`("r"^2 + 1/"r"^2)^2`
= `"r"^4 + (1)/sqrt(4) + 2`
⇒ (18)2 = `"r"^4 + (1)/"r"^4 + 2`
⇒ `"r"^4 + (1)/"r"^4`
= 324 - 2
= 322.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(x + 2y + 4z)2
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If a − b = −8 and ab = −12, then a3 − b3 =
Evalute : `((2x)/7 - (7y)/4)^2`
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
Simplify:
(2x + y)(4x2 - 2xy + y2)
Expand the following:
(–x + 2y – 3z)2