Advertisements
Advertisements
प्रश्न
If `"r" - (1)/"r" = 4`; find : `"r"^3 - (1)/"r"^3`
योग
उत्तर
`("r" - 1/"r")^3`
=`"r"^3 - (1)/"r"^3 - 3("r" - 1/"r")`
⇒ (4)3 = `"r"^3 - 1/"r"^3 - 3(4)`
⇒ `"r"^3 - (1)/"r"^3`
= 64 + 12
= 76.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Use property to evaluate : 383 + (-26)3 + (-12)3
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
Find the cube of: `4"p" - (1)/"p"`
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If a + b + c = 0; then show that a3 + b3 + c3 = 3abc.
If 2a - 3b = 10 and ab = 16; find the value of 8a3 - 27b3.
Simplify:
`("a" + 1/"a")^3 - ("a" - 1/"a")^3`
Expand: (41)3
Expand: `((2m)/n + n/(2m))^3`.