Advertisements
Advertisements
प्रश्न
Simplify:
`("a" + 1/"a")^3 - ("a" - 1/"a")^3`
उत्तर
`("a" + 1/"a")^3 - ("a" - 1/"a")^3`
= `("a")3 + (1/"a")^3 + 3("a")(1/"a")("a" + 1/"a") - [("a")^3 - (1/"a")^3 = -3("a")(1/"a")("a" - 1/"a")]`
= `"a"^3 + (1)/"a"^3 + 3("a" + 1/"a") - ["a"^3 - 1/"a"^3 - 3("a" - 1/"a")]`
= `"a"^3 + (1)/"a"^3 + 3"a" + (3)/"a" - "a"^3 + (1)/"a"^3 + 3"a" - (3)/"a"`
= `(2)/"a"^3 + 6"a"`.
APPEARS IN
संबंधित प्रश्न
Expand.
(7x + 8y)3
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
Use property to evaluate : 73 + 33 + (-10)3
Use property to evaluate : 383 + (-26)3 + (-12)3
If 2x - 3y = 10 and xy = 16; find the value of 8x3 - 27y3.
If `3x - (1)/(3x) = 9`; find the value of `27x^3 - (1)/(27x^3)`.
If `x + (1)/x = 5`, find the value of `x^2 + (1)/x^2, x^3 + (1)/x^3` and `x^4 + (1)/x^4`.
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"^3 + (1)/"a"^3`
Expand: (3x + 4y)3.
If `"a" + 1/"a"` = 6, then find the value of `"a"^3 + 1/"a"^3`