Advertisements
Advertisements
प्रश्न
If `"a" + 1/"a"` = 6, then find the value of `"a"^3 + 1/"a"^3`
योग
उत्तर
`"a" + 1/"a"` = 6 ...[a3 + b3 = (a + b)3 – 3ab (a + b)]
`"a"^3 + 1/"a"^3 = ("a" + 1/"a")^3 - 3"a" xx 1/"a"("a" + 1/"a")`
= 63 – 3(6)
= 216 – 18
= 198
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Expand.
`(2m + 1/5)^3`
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
Expand : (3x - 5y - 2z) (3x - 5y + 2z)
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^2 + 1/a^2 )`
Find the cube of: 2a - 5b
Find the cube of: `3"a" + (1)/(3"a")`
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
Simplify:
`("a" + 1/"a")^3 - ("a" - 1/"a")^3`
Expand (104)3