Advertisements
Advertisements
प्रश्न
Expand.
`(2m + 1/5)^3`
उत्तर
Here, a = 2m, b = `1/5`
We know that,
(a + b)3 = a3 + 3a2b + 3ab2 + b3
∴ `(2m + 1/5)^3 = (2m)^3 + 3(2m)^2(1/5) + 3(2m)(1/5)^2 + (1/5)^3`
= `2^3m^3 + 3/5(2^2 m^2) + 6m xx 1^2/5^2 + 1^3/5^3`
= `8m^3 + 12/5 m^2 + (6m)/25 + 1/125`
∴ `(2m + 1/5)^3 = 8m^3 + 12/5 m^2 + 6/25m + 1/125`
संबंधित प्रश्न
Find the cube of : `2a + 1/(2a)` ( a ≠ 0 )
Use property to evaluate : 133 + (-8)3 + (-5)3
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^2 + 1/a^2 )`
Find the cube of: `4"p" - (1)/"p"`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"^3 + (1)/"a"^3`
Simplify:
`("a" + 1/"a")^3 - ("a" - 1/"a")^3`
If `"a" + 1/"a"` = 6, then find the value of `"a"^3 + 1/"a"^3`
Expand (2a + 5)3
(p + q)(p2 – pq + q2) is equal to _____________