Advertisements
Advertisements
प्रश्न
Expand.
`(x + 1/x)^3`
योग
उत्तर
Here, a = x, b = `1/x`
We know that,
(a + b)3 = a3 + 3a2b + 3ab2 + b3
∴ `(x + 1/x)^3 = x^3 + 3(x)^2(1/x) + 3(x)(1/x)^2 + (1/x)^3`
= `x^3 + 3x^2 xx 1/x + 3x xx 1/x^2 + 1/x^3`
= `x^3 + 3x + 3/x + 1/x^3`
∴ `(x + 1/x)^3 = x^3 + 3x + 3/x + 1/x^3`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
संबंधित प्रश्न
Expand.
(101)3
Find the cube of : 5a + 3b
Use property to evaluate : 73 + 33 + (-10)3
Expand : (3x + 5y + 2z) (3x - 5y + 2z)
If a ≠ 0 and `a - 1/a` = 3 ; find `a^2 + 1/a^2`
Find the cube of: 4x + 7y
Find the cube of: `"a" - (1)/"a" + "b"`
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
Simplify:
`("a" + 1/"a")^3 - ("a" - 1/"a")^3`
Expand: `[x + 1/y]^3`