Advertisements
Advertisements
प्रश्न
If a ≠ 0 and `a - 1/a` = 3 ; find `a^2 + 1/a^2`
योग
उत्तर
`a - 1/a = 3`
Squaring both sides,
⇒ `(a - 1/a)^2 = 3^2`
⇒ `a^2 + (1/a)^2 - 2(a) (1/a) = 9`
⇒ `a^2 + 1/a^2 - 2 = 9`
⇒ `a^2 + 1/a^2 = 11`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Expand.
(k + 4)3
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
Expand : (3x - 5y - 2z) (3x - 5y + 2z)
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^2 + 1/a^2 )`
If `3x - (1)/(3x) = 9`; find the value of `27x^3 - (1)/(27x^3)`.
If `"a" - (1)/"a" = 7`, find `"a"^2 + (1)/"a"^2 , "a"^2 - (1)/"a"^2` and `"a"^3 - (1)/"a"^3`
If `"r" - (1)/"r" = 4`; find : `"r"^3 - (1)/"r"^3`
If a + 2b + c = 0; then show that a3 + 8b3 + c3 = 6abc
If 2a - 3b = 10 and ab = 16; find the value of 8a3 - 27b3.
If `"a" + 1/"a"` = 6, then find the value of `"a"^3 + 1/"a"^3`