Advertisements
Advertisements
प्रश्न
If a + 2b + c = 0; then show that a3 + 8b3 + c3 = 6abc
उत्तर
a + 2b + c = 0 ...(i)
⇒ (a + 2b) + c = 0
⇒ (a + 2b)3 + c3 + 3(a + 2b) c(a + 2b + c) = 0
⇒ a3 + 8b2 + 6ab (a + 2b) + c3 + 0 = 0
⇒ a3 + 8b3 + c3 + 6ab (a + 2b) = 0 ....(2)
Using (1), we get a + 2b = -c
From (2),
a3 + 8b3 + 6ab (-c) = 0
⇒ a3 + 8b3 + c3 = 6abc.
APPEARS IN
संबंधित प्रश्न
Expand.
`((5x)/y + y/(5x))^3`
Simplify.
(3r − 2k)3 + (3r + 2k)3
Find the cube of : 5a + 3b
Find the cube of : `( 3a - 1/a ) (a ≠ 0 )`
If a2 + `1/a^2 = 47` and a ≠ 0 find :
- `a + 1/a`
- `a^3 + 1/a^3`
Use property to evaluate : 133 + (-8)3 + (-5)3
The sum of two numbers is 9 and their product is 20. Find the sum of their (i) Squares (ii) Cubes
If `3x - (1)/(3x) = 9`; find the value of `27x^3 - (1)/(27x^3)`.
Simplify:
`("a" + 1/"a")^3 - ("a" - 1/"a")^3`
Expand: (3x + 4y)3.