Advertisements
Advertisements
प्रश्न
If a2 + `1/a^2 = 47` and a ≠ 0 find :
- `a + 1/a`
- `a^3 + 1/a^3`
उत्तर
(i) `a + 1/a`
`a^2 + 1/a^2 = 47`
`( a + 1/a )^2 = a^2 + 1/a^2 + 2`
⇒ `( a + 1/a )^2 = 47 + 2`
⇒ `( a + 1/a )^2 = 49`
⇒ `a + 1/a = +- sqrt49`
⇒ `a + 1/a = +- 7` ....(1)
(ii) `a^3 + 1/a^3`
`( a + 1/a )^3 = a^3 + 1/a^3 + 3( a + 1/a )`
⇒ `a^3 + 1/a^3 = ( a + 1/a )^3 - 3( a + 1/a )`
⇒ `a^3 + 1/a^3 = ( +- 7 )^3 - 3( +- 7 )` [ From (1) ]
⇒ `a^3 + 1/a^3 = +- 322`
APPEARS IN
संबंधित प्रश्न
Expand.
`((5x)/y + y/(5x))^3`
If `( a + 1/a )^2 = 3 "and a ≠ 0; then show:" a^3 + 1/a^3 = 0`.
Use property to evaluate : 383 + (-26)3 + (-12)3
Find the cube of: `3"a" + (1)/(3"a")`
If `9"a"^2 + (1)/(9"a"^2) = 23`; find the value of `27"a"^3 + (1)/(27"a"^3)`
If `"a" + (1)/"a" = "p"`; then show that `"a"^3 + (1)/"a"^3 = "p"("p"^2 - 3)`
If `("a" + 1/"a")^2 = 3`; then show that `"a"^3 + (1)/"a"^3 = 0`
If p - q = -1 and pq = -12, find p3 - q3
If m - n = -2 and m3 - n3 = -26, find mn.
Find the volume of the cube whose side is (x + 1) cm