Advertisements
Advertisements
प्रश्न
If a2 + `1/a^2 = 47` and a ≠ 0 find :
- `a + 1/a`
- `a^3 + 1/a^3`
उत्तर
(i) `a + 1/a`
`a^2 + 1/a^2 = 47`
`( a + 1/a )^2 = a^2 + 1/a^2 + 2`
⇒ `( a + 1/a )^2 = 47 + 2`
⇒ `( a + 1/a )^2 = 49`
⇒ `a + 1/a = +- sqrt49`
⇒ `a + 1/a = +- 7` ....(1)
(ii) `a^3 + 1/a^3`
`( a + 1/a )^3 = a^3 + 1/a^3 + 3( a + 1/a )`
⇒ `a^3 + 1/a^3 = ( a + 1/a )^3 - 3( a + 1/a )`
⇒ `a^3 + 1/a^3 = ( +- 7 )^3 - 3( +- 7 )` [ From (1) ]
⇒ `a^3 + 1/a^3 = +- 322`
APPEARS IN
संबंधित प्रश्न
Find the cube of : `( 3a - 1/a ) (a ≠ 0 )`
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If `"a" - (1)/"a" = 7`, find `"a"^2 + (1)/"a"^2 , "a"^2 - (1)/"a"^2` and `"a"^3 - (1)/"a"^3`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"^3 + (1)/"a"^3`
If `x^2 + (1)/x^2 = 18`; find : `x^3 - (1)/x^3`
Evaluate the following :
(5.45)3 + (3.55)3
Expand: (x + 3)3.
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`