Advertisements
Advertisements
प्रश्न
If `"a" - (1)/"a" = 7`, find `"a"^2 + (1)/"a"^2 , "a"^2 - (1)/"a"^2` and `"a"^3 - (1)/"a"^3`
उत्तर
`"a" - (1)/"a" = 7` ...(1)
Squaring both sides of (1),
`("a" - 1/"a")^2` = (7)2
⇒ `"a"^2 + (1)/"a"^2 - 2` = 49
⇒ `"a"^2 + (1)/"a"^2`
= 49 + 2
= 51
Now, `("a" + 1/"a")^2`
= `"a"^2 + (1)/"a"^2 + 2`
= 51 + 2
= 53
⇒ `"a" + (1)/"a"`
= ±`sqrt(53)`
Now `"a"^2 - (1)/"a"^2`
= `("a" + 1/"a")("a" - 1/"a")`
= `(±sqrt(53)) (7)`
= ±7`sqrt(53)`
Cubing both sides of (1),
`("a" - 1/"a")^3` = (7)3
⇒ `"a"^3 - (1)/"a"^3 - 3("a" - 1/"a")` = 343
⇒ `"a"^3 - (1)/"a"^3 - 3(7)` = 343
⇒ `"a"^3 - (1)/("a"^3`
= 343 + 21
= 364.
APPEARS IN
संबंधित प्रश्न
Expand.
(7x + 8y)3
Two positive numbers x and y are such that x > y. If the difference of these numbers is 5 and their product is 24, find:
(i) Sum of these numbers
(ii) Difference of their cubes
(iii) Sum of their cubes.
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^2 + 1/a^2 )`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"^3 + (1)/"a"^3`
If `"r" - (1)/"r" = 4`; find : `"r"^3 - (1)/"r"^3`
If a + b = 5 and ab = 2, find a3 + b3.
Expand: `((2m)/n + n/(2m))^3`.
Expand: `[x + 1/y]^3`