Advertisements
Advertisements
प्रश्न
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
बेरीज
उत्तर
`(a - 1/a)^3 = a^3 - 1/a^3 - 3( a - 1/a )`
⇒ `( a^3 - 1/a^3 ) = (a - 1/a)^3 + 3( a - 1/a )`
⇒ `( a^3 - 1/a^3 ) = (4)^3 + 3(4)` [ ∵ `a - 1/a = 4` ]
⇒ `( a^3 - 1/a^3 ) = 64 + 12 `
⇒ `( a^3 - 1/a^3 ) = 76`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Expand.
(7 + m)3
Expand.
`((5x)/y + y/(5x))^3`
Find the cube of : 3a- 2b
If `a + 1/a` = p and a ≠ 0; then show that:
`a^3 + 1/a^3 = p(p^2 - 3)`
Use property to evaluate : 133 + (-8)3 + (-5)3
Use property to evaluate : 383 + (-26)3 + (-12)3
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If a + 2b + c = 0; then show that a3 + 8b3 + c3 = 6abc
Simplify:
(a + b)3 + (a - b)3
Expand (2a + 5)3