Advertisements
Advertisements
प्रश्न
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
योग
उत्तर
`(a - 1/a)^3 = a^3 - 1/a^3 - 3( a - 1/a )`
⇒ `( a^3 - 1/a^3 ) = (a - 1/a)^3 + 3( a - 1/a )`
⇒ `( a^3 - 1/a^3 ) = (4)^3 + 3(4)` [ ∵ `a - 1/a = 4` ]
⇒ `( a^3 - 1/a^3 ) = 64 + 12 `
⇒ `( a^3 - 1/a^3 ) = 76`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Expand.
(101)3
Find the cube of : `2a + 1/(2a)` ( a ≠ 0 )
If a ≠ 0 and `a - 1/a` = 3 ; find `a^2 + 1/a^2`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^2 + 1/a^2 )`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^4 + 1/a^4 )`
Find the cube of: `3"a" + (1)/(3"a")`
Find the cube of: `(2"m")/(3"n") + (3"n")/(2"m")`
If `x^2 + (1)/x^2 = 18`; find : `x^3 - (1)/x^3`
Evaluate the following :
(3.29)3 + (6.71)3
Expand (52)3