Advertisements
Advertisements
प्रश्न
If X ≠ 0 and X + `1/"X"` = 2 ; then show that :
`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`
उत्तर
`( x + 1/x )^2 = x^2 + 1/x^2 + 2`
⇒ `x^2 + 1/x^2 = ( x + 1/x )^2 - 2`
⇒ `x^2 + 1/x^2 = (2)^2 - 2 [ ∵ x + 1/x = 2 ]`
⇒ `x^2 + 1/x^2 = 2` .....(1)
`( x + 1/x )^3 = x^3 + 1/x^3 + 3( x + 1/x)`
⇒ `x^3 + 1/x^3 = ( x + 1/x )^3 - 3( x + 1/x )`
⇒ `x^3 + 1/x^3 = (2)^3 - 3(2) [ ∵ x + 1/x = 2 ]`
⇒ `x^3 + 1/x^3 = 8 - 6`
⇒ `x^3 + 1/x^3 = 2` ...(2)
We know that
`x^4 + 1/x^4 = ( x^2 + 1/x^2 )^2 - 2`
= `(2)^2 - 2` [ from (1) ]
= 4 - 2
⇒ `x^4 + 1/x^4 = 2` ...(3)
Thus from equations (1), (2) and (3), we have
`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`
APPEARS IN
संबंधित प्रश्न
Expand : (3x + 5y + 2z) (3x - 5y + 2z)
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^2 + 1/a^2 )`
If `("a" + 1/"a")^2 = 3`; then show that `"a"^3 + (1)/"a"^3 = 0`
If a + b = 5 and ab = 2, find a3 + b3.
Expand: (x + 3)3.
Expand: `[x + 1/y]^3`
If `"a" + 1/"a"` = 6, then find the value of `"a"^3 + 1/"a"^3`
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`
Expand (3 + m)3
Expand (3p + 4q)3