Advertisements
Advertisements
Question
If X ≠ 0 and X + `1/"X"` = 2 ; then show that :
`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`
Solution
`( x + 1/x )^2 = x^2 + 1/x^2 + 2`
⇒ `x^2 + 1/x^2 = ( x + 1/x )^2 - 2`
⇒ `x^2 + 1/x^2 = (2)^2 - 2 [ ∵ x + 1/x = 2 ]`
⇒ `x^2 + 1/x^2 = 2` .....(1)
`( x + 1/x )^3 = x^3 + 1/x^3 + 3( x + 1/x)`
⇒ `x^3 + 1/x^3 = ( x + 1/x )^3 - 3( x + 1/x )`
⇒ `x^3 + 1/x^3 = (2)^3 - 3(2) [ ∵ x + 1/x = 2 ]`
⇒ `x^3 + 1/x^3 = 8 - 6`
⇒ `x^3 + 1/x^3 = 2` ...(2)
We know that
`x^4 + 1/x^4 = ( x^2 + 1/x^2 )^2 - 2`
= `(2)^2 - 2` [ from (1) ]
= 4 - 2
⇒ `x^4 + 1/x^4 = 2` ...(3)
Thus from equations (1), (2) and (3), we have
`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`
APPEARS IN
RELATED QUESTIONS
Expand.
(7x + 8y)3
Find the cube of : `2a + 1/(2a)` ( a ≠ 0 )
Use property to evaluate : 93 - 53 - 43
If 4x2 + y2 = a and xy = b, find the value of 2x + y.
Find the cube of: `"a" - (1)/"a" + "b"`
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"^3 + (1)/"a"^3`
If a + b + c = 0; then show that a3 + b3 + c3 = 3abc.
If x3 + y3 = 9 and x + y = 3, find xy.
Expand: (x + 3)3.