Advertisements
Advertisements
Question
If x3 + y3 = 9 and x + y = 3, find xy.
Sum
Solution
x3 + y3 = 9, x + y = 3
(x + y)3 = x3 + y3 + 3xy (x + y)
⇒ (3)3 = 9 + 3xy (3)
⇒ 27 = 9 + 9xy
⇒ 9xy = 27 - 9 = 18
⇒ xy = 2.
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Expand.
(7x + 8y)3
If `( a + 1/a )^2 = 3 "and a ≠ 0; then show:" a^3 + 1/a^3 = 0`.
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
If `3x - (1)/(3x) = 9`; find the value of `27x^3 - (1)/(27x^3)`.
If `9"a"^2 + (1)/(9"a"^2) = 23`; find the value of `27"a"^3 + (1)/(27"a"^3)`
If `"p" + (1)/"p" = 6`; find : `"p"^3 + (1)/"p"^3`
Evaluate the following :
(5.45)3 + (3.55)3
Expand: `[x + 1/y]^3`
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`