Advertisements
Advertisements
Question
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
Solution
`a- 1/a` = 3...............(Given)
Taking a cube on both sides,
`( a - 1/a )^3 = 3^3`
`a^3 - 1/a^3 - 3( a - 1/a) = 27`..............[(a - b)3 = a3 - b3 -3ab(a - b)]
`a^3 - 1/a^3 - 3 × 3 = 27..............[a- 1/a = 3]`
`a^3 - 1/a^3 - 9 = 27`
`a^3 - 1/a^3` = 27 + 9
`a^3 - 1/a^3` = 36.
APPEARS IN
RELATED QUESTIONS
Expand.
(52)3
Find the cube of : `( 3a - 1/a ) (a ≠ 0 )`
Use property to evaluate : 93 - 53 - 43
If a ≠ 0 and `a - 1/a` = 3 ; find `a^2 + 1/a^2`
If `3x - (1)/(3x) = 9`; find the value of `27x^3 - (1)/(27x^3)`.
If `"m"^2 + (1)/"m"^2 = 51`; find the value of `"m"^3 - (1)/"m"^3`
If x3 + y3 = 9 and x + y = 3, find xy.
If 2a - 3b = 10 and ab = 16; find the value of 8a3 - 27b3.
Expand: `[x + 1/y]^3`
(p + q)(p2 – pq + q2) is equal to _____________