Advertisements
Advertisements
Question
If a ≠ 0 and `a - 1/a` = 3 ; find `a^2 + 1/a^2`
Sum
Solution
`a - 1/a = 3`
Squaring both sides,
⇒ `(a - 1/a)^2 = 3^2`
⇒ `a^2 + (1/a)^2 - 2(a) (1/a) = 9`
⇒ `a^2 + 1/a^2 - 2 = 9`
⇒ `a^2 + 1/a^2 = 11`
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Expand.
`(x + 1/x)^3`
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
Find the cube of: 2a - 5b
Find the cube of: 4x + 7y
Find the cube of: `(2"m")/(3"n") + (3"n")/(2"m")`
If `"a" - (1)/"a" = 7`, find `"a"^2 + (1)/"a"^2 , "a"^2 - (1)/"a"^2` and `"a"^3 - (1)/"a"^3`
If x3 + y3 = 9 and x + y = 3, find xy.
Expand (52)3
(p + q)(p2 – pq + q2) is equal to _____________
a3 + b3 = (a + b)3 = __________