Advertisements
Advertisements
Question
If `"a" - (1)/"a" = 7`, find `"a"^2 + (1)/"a"^2 , "a"^2 - (1)/"a"^2` and `"a"^3 - (1)/"a"^3`
Solution
`"a" - (1)/"a" = 7` ...(1)
Squaring both sides of (1),
`("a" - 1/"a")^2` = (7)2
⇒ `"a"^2 + (1)/"a"^2 - 2` = 49
⇒ `"a"^2 + (1)/"a"^2`
= 49 + 2
= 51
Now, `("a" + 1/"a")^2`
= `"a"^2 + (1)/"a"^2 + 2`
= 51 + 2
= 53
⇒ `"a" + (1)/"a"`
= ±`sqrt(53)`
Now `"a"^2 - (1)/"a"^2`
= `("a" + 1/"a")("a" - 1/"a")`
= `(±sqrt(53)) (7)`
= ±7`sqrt(53)`
Cubing both sides of (1),
`("a" - 1/"a")^3` = (7)3
⇒ `"a"^3 - (1)/"a"^3 - 3("a" - 1/"a")` = 343
⇒ `"a"^3 - (1)/"a"^3 - 3(7)` = 343
⇒ `"a"^3 - (1)/("a"^3`
= 343 + 21
= 364.
APPEARS IN
RELATED QUESTIONS
Expand.
(k + 4)3
Use property to evaluate : 73 + 33 + (-10)3
If X ≠ 0 and X + `1/"X"` = 2 ; then show that :
`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`
If x3 + y3 = 9 and x + y = 3, find xy.
If a + b = 5 and ab = 2, find a3 + b3.
If 2a - 3b = 10 and ab = 16; find the value of 8a3 - 27b3.
Expand: (3x + 4y)3.
Expand: (41)3
Find the volume of the cube whose side is (x + 1) cm
(p + q)(p2 – pq + q2) is equal to _____________