Advertisements
Advertisements
Question
If `x + (1)/x = 5`, find the value of `x^2 + (1)/x^2, x^3 + (1)/x^3` and `x^4 + (1)/x^4`.
Solution
`x + (1)/x = 5` ...(1)
Squaring both sides of (1)
`(x + 1/x)^2` = (5)2
⇒ `x^2 + (1)/x^2 + 2` = 25
⇒ `x^2 + (1)/x^2`
= 25 - 2
= 23 ...(2)
Cubing both sides of (1),
`(x + 1/x)^3` = 953
`x^3 + (1)/x^3 + 3 (x + 1/x)` = 125
⇒ `x^3 + (1)/x^3 + 3 (5)` = 125
⇒ `x^3 + (1)/x^3`
= 125 - 15
= 110
Squaring both sides of (2),
`(x^2 + 1/x^2)^2` = (23)2
⇒ `x^4 = (1)/x^4 + = 529`
⇒ `x^4 + (1)/x^4`
= 529 - 2
= 527.
APPEARS IN
RELATED QUESTIONS
Expand.
(7 + m)3
Find the cube of: 4x + 7y
If `"m"^2 + (1)/"m"^2 = 51`; find the value of `"m"^3 - (1)/"m"^3`
If `"r" - (1)/"r" = 4`; find : `"r"^3 - (1)/"r"^3`
If `("a" + 1/"a")^2 = 3`; then show that `"a"^3 + (1)/"a"^3 = 0`
If a + b + c = 0; then show that a3 + b3 + c3 = 3abc.
If `"a" + 1/"a"` = 6, then find the value of `"a"^3 + 1/"a"^3`
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`
Expand (2a + 5)3
Expand (104)3