Advertisements
Advertisements
Question
If `"a" + 1/"a"` = 6, then find the value of `"a"^3 + 1/"a"^3`
Sum
Solution
`"a" + 1/"a"` = 6 ...[a3 + b3 = (a + b)3 – 3ab (a + b)]
`"a"^3 + 1/"a"^3 = ("a" + 1/"a")^3 - 3"a" xx 1/"a"("a" + 1/"a")`
= 63 – 3(6)
= 216 – 18
= 198
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Simplify.
(3r − 2k)3 + (3r + 2k)3
Find the cube of : `( 3a - 1/a ) (a ≠ 0 )`
If `a + 1/a` = p and a ≠ 0; then show that:
`a^3 + 1/a^3 = p(p^2 - 3)`
If 2x - 3y = 10 and xy = 16; find the value of 8x3 - 27y3.
If `5x + (1)/(5x) = 7`; find the value of `125x^3 + (1)/(125x^3)`.
If a + b = 5 and ab = 2, find a3 + b3.
Evaluate the following :
(8.12)3 - (3.12)3
Expand: (3x + 4y)3.
Expand: `((2m)/n + n/(2m))^3`.
Expand (52)3