Advertisements
Advertisements
Question
Simplify.
(3r − 2k)3 + (3r + 2k)3
Solution
It is known that,
\[\left( a + b \right)^3 = a^3 + b^3 + 3 a^2 b + 3a b^2 ; \left( a - b \right)^3 = a^3 - b^3 - 3 a^2 b + 3a b^2\]
\[\left( 3r - 2k \right)^3 + \left( 3r + 2k \right)^3 \]
\[ = \left( 3r \right)^3 - \left( 2k \right)^3 - 3 \times \left( 3r \right)^2 \times 2k + 3 \times 3r \times \left( 2k \right)^2 + \left( 3r \right)^3 + \left( 2k \right)^3 + 3 \times \left( 3r \right)^2 \times 2k + 3 \times 3r \times \left( 2k \right)^2 \]
\[ = 27 r^3 - 8 k^3 - 54 r^2 k + 36r k^2 + 27 r^3 + 8 k^3 + 54 r^2 k + 36r k^2 \]
\[ = 54 r^3 + 72r k^2\]
RELATED QUESTIONS
Expand.
`(2m + 1/5)^3`
If a2 + `1/a^2 = 47` and a ≠ 0 find :
- `a + 1/a`
- `a^3 + 1/a^3`
If a + 2b = 5; then show that : a3 + 8b3 + 30ab = 125.
If `( a + 1/a )^2 = 3 "and a ≠ 0; then show:" a^3 + 1/a^3 = 0`.
Find the cube of: 2a - 5b
If `"m"^2 + (1)/"m"^2 = 51`; find the value of `"m"^3 - (1)/"m"^3`
If p - q = -1 and pq = -12, find p3 - q3
Simplify:
`("a" + 1/"a")^3 - ("a" - 1/"a")^3`
Expand: (41)3
Expand (104)3