Advertisements
Advertisements
Question
If a2 + `1/a^2 = 47` and a ≠ 0 find :
- `a + 1/a`
- `a^3 + 1/a^3`
Solution
(i) `a + 1/a`
`a^2 + 1/a^2 = 47`
`( a + 1/a )^2 = a^2 + 1/a^2 + 2`
⇒ `( a + 1/a )^2 = 47 + 2`
⇒ `( a + 1/a )^2 = 49`
⇒ `a + 1/a = +- sqrt49`
⇒ `a + 1/a = +- 7` ....(1)
(ii) `a^3 + 1/a^3`
`( a + 1/a )^3 = a^3 + 1/a^3 + 3( a + 1/a )`
⇒ `a^3 + 1/a^3 = ( a + 1/a )^3 - 3( a + 1/a )`
⇒ `a^3 + 1/a^3 = ( +- 7 )^3 - 3( +- 7 )` [ From (1) ]
⇒ `a^3 + 1/a^3 = +- 322`
APPEARS IN
RELATED QUESTIONS
Expand.
(7x + 8y)3
Expand : (3x - 5y - 2z) (3x - 5y + 2z)
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^4 + 1/a^4 )`
If `x + (1)/x = 5`, find the value of `x^2 + (1)/x^2, x^3 + (1)/x^3` and `x^4 + (1)/x^4`.
If a + 2b + c = 0; then show that a3 + 8b3 + c3 = 6abc
If m - n = -2 and m3 - n3 = -26, find mn.
Expand: (41)3
Expand: `[x + 1/y]^3`
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`
Expand (2a + 5)3