English

If A^2 + 1/A^2 = 18; a ≠ 0 Find : (I) a - 1/A (Ii) A^3 - 1/A^3 - Mathematics

Advertisements
Advertisements

Question

If  `a^2 + 1/a^2` = 18; a ≠ 0 find :

(i) `a - 1/a`

(ii) `a^3 - 1/a^3`

Sum

Solution

`a^2 + 1/a^2` = 18`

`( a - 1/a )^2 = a^2 + 1/a^2 - 2`

⇒ `( a - 1/a )^2 = 18 - 2` 

⇒ `( a - 1/a)^2 = 16`

⇒ `a - 1/a = +- sqrt16`

⇒ `a - 1/a = +- 4`               ...(1)

(ii) `( a - 1/a )^3 = a^3 - 1/a^3 - 3( a - 1/a )`

⇒ `a^3 - 1/a^3 = ( a - 1/a )^3 + 3( a - 1/a )`

⇒ `a^3 - 1/a^3 = (+- 4)^3 + 3(+- 4)`           [ From(1) ]

⇒ `a^3 - 1/a^3 = +- 76` 

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Expansions (Including Substitution) - Exercise 4 (B) [Page 60]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 4 Expansions (Including Substitution)
Exercise 4 (B) | Q 3 | Page 60
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×