Advertisements
Advertisements
Question
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
Solution
`a^2 + 1/a^2` = 18`
`( a - 1/a )^2 = a^2 + 1/a^2 - 2`
⇒ `( a - 1/a )^2 = 18 - 2`
⇒ `( a - 1/a)^2 = 16`
⇒ `a - 1/a = +- sqrt16`
⇒ `a - 1/a = +- 4` ...(1)
(ii) `( a - 1/a )^3 = a^3 - 1/a^3 - 3( a - 1/a )`
⇒ `a^3 - 1/a^3 = ( a - 1/a )^3 + 3( a - 1/a )`
⇒ `a^3 - 1/a^3 = (+- 4)^3 + 3(+- 4)` [ From(1) ]
⇒ `a^3 - 1/a^3 = +- 76`
APPEARS IN
RELATED QUESTIONS
Simplify.
(3r − 2k)3 + (3r + 2k)3
If a + 2b = 5; then show that : a3 + 8b3 + 30ab = 125.
The sum of two numbers is 9 and their product is 20. Find the sum of their (i) Squares (ii) Cubes
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
Find the cube of: 2a - 5b
Find the cube of: `3"a" + (1)/(3"a")`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"^3 + (1)/"a"^3`
If `"a" + (1)/"a" = "p"`; then show that `"a"^3 + (1)/"a"^3 = "p"("p"^2 - 3)`
Evaluate the following :
(3.29)3 + (6.71)3
Find the volume of the cube whose side is (x + 1) cm