Advertisements
Advertisements
Question
If `"a" + (1)/"a" = "p"`; then show that `"a"^3 + (1)/"a"^3 = "p"("p"^2 - 3)`
Sum
Solution
`"a" + (1)/"a" = "p"`
`("a" + 1/"a")^3`
= `"a"^3 + (1)/"a"^3 + 3("a" + 1/"a")`
⇒ p3 = `"a"^3 + (1)/"a"^3 + 3("p")`
⇒ `"a"^3 + (1)/"a"^3`
= p3 - 3p
= p(p2 - 3).
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Expand.
`(2m + 1/5)^3`
If a2 + `1/a^2 = 47` and a ≠ 0 find :
- `a + 1/a`
- `a^3 + 1/a^3`
Expand : (3x - 5y - 2z) (3x - 5y + 2z)
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
Find the cube of: `3"a" + (1)/(3"a")`
If `x + (1)/x = 5`, find the value of `x^2 + (1)/x^2, x^3 + (1)/x^3` and `x^4 + (1)/x^4`.
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a"^3 + (1)/"a"^3`
If x3 + y3 = 9 and x + y = 3, find xy.
Simplify:
`("a" + 1/"a")^3 - ("a" - 1/"a")^3`
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`