Advertisements
Advertisements
Question
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
Solution
`x + (1)/x = "p", x - (1)/x = "q"`
`(x + 1/x)^2`
= `x^2 + (1)/x^2 +2`
⇒ p2 = `x^2 + (1)/x^2 + 2`
⇒ `x^2 + (1)/x^2 = "p"^2 - 2` ...(1)
Also, `(x - 1/x)^2`
= `x^2 + (1)/x^2 - 2`
⇒ `"q"^2 = x^2 + (1)/x^2 - 2`
⇒ `x^2 + (1)/x^2 = "q"^2 + 2` ...(2)
Equating the value `x^2 + (1)/x^2` from and (2), we get :
p2 - 2 = q2 + 2
⇒ p2 - q2 = 4.
APPEARS IN
RELATED QUESTIONS
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Find the following product:
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
If a1/3 + b1/3 + c1/3 = 0, then
Evaluate: (2a + 0.5) (7a − 0.3)
Evaluate: (9 − y) (7 + y)
Expand the following:
(3x + 4) (2x - 1)
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`