Advertisements
Advertisements
Question
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
Solution
`"a" - 1/"a" = 10`
`("a" - 1/"a")^2`
= `"a"^2 + 1/"a"^2 - 2("a") (1/"a")`
⇒ (10)2
= `"a"^2 + 1/"a"^2 - 2`
⇒ `"a"^2 + 1/"a"^2`
= 102
Now, `("a" + 1/"a"^2)`
= `"a"^2 + 1/"a"^2 + 2("a") (1/"a")`
= 102 + 2
= 104
⇒ `"a"^2 - 1/"a"^2`
= `sqrt(104)`
= ±2`sqrt(26)`.
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Find the following product:
Use the direct method to evaluate :
(2+a) (2−a)
Simplify by using formula :
(x + y - 3) (x + y + 3)
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
Simplify:
(7a +5b)2 - (7a - 5b)2