Advertisements
Advertisements
प्रश्न
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
उत्तर
`"a" - 1/"a" = 10`
`("a" - 1/"a")^2`
= `"a"^2 + 1/"a"^2 - 2("a") (1/"a")`
⇒ (10)2
= `"a"^2 + 1/"a"^2 - 2`
⇒ `"a"^2 + 1/"a"^2`
= 102
Now, `("a" + 1/"a"^2)`
= `"a"^2 + 1/"a"^2 + 2("a") (1/"a")`
= 102 + 2
= 104
⇒ `"a"^2 - 1/"a"^2`
= `sqrt(104)`
= ±2`sqrt(26)`.
APPEARS IN
संबंधित प्रश्न
Simplify of the following:
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Evalute : `((2x)/7 - (7y)/4)^2`
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Expand the following:
`(2"a" + 1/(2"a"))^2`
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If x + y = 1 and xy = -12; find:
x2 - y2.
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.