Advertisements
Advertisements
प्रश्न
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
उत्तर
`x + (1)/x = "p", x - (1)/x = "q"`
`(x + 1/x)^2`
= `x^2 + (1)/x^2 +2`
⇒ p2 = `x^2 + (1)/x^2 + 2`
⇒ `x^2 + (1)/x^2 = "p"^2 - 2` ...(1)
Also, `(x - 1/x)^2`
= `x^2 + (1)/x^2 - 2`
⇒ `"q"^2 = x^2 + (1)/x^2 - 2`
⇒ `x^2 + (1)/x^2 = "q"^2 + 2` ...(2)
Equating the value `x^2 + (1)/x^2` from and (2), we get :
p2 - 2 = q2 + 2
⇒ p2 - q2 = 4.
APPEARS IN
संबंधित प्रश्न
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
If x + y = 1 and xy = -12; find:
x2 - y2.
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
Which one of the following is a polynomial?
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.