Advertisements
Advertisements
प्रश्न
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
योग
उत्तर
`"a" - (1)/"a"` = 3
Squaring both sides, we get
`("a" - 1/"a")^2`
= `"a"^2 + (1)/"a"^2 - 2`
= 9
⇒ `"a"^2 + (1)/"a"^2`
= 11.
Now,
`("a" + 1/"a")^2`
= `"a"^2 + (1)/"a"^2`
= 11 + 2
= 13
⇒ `"a" + (1)/"a"^2`
= ±`sqrt(13)`.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Evaluate:
253 − 753 + 503
Evaluate:
483 − 303 − 183
If a − b = 5 and ab = 12, find the value of a2 + b2
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Expand the following:
(m + 8) (m - 7)
Expand the following:
(2p - 3q)2
Simplify by using formula :
(x + y - 3) (x + y + 3)
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`