Advertisements
Advertisements
प्रश्न
If a − b = 5 and ab = 12, find the value of a2 + b2
उत्तर
We have to find the value `a^2 +b^2`
Given a-b = 5, ab = 12
Using identity `(a - b)^2 = a^2 - 2ab +b^2`
By substituting the value of a-b = 5 ,ab = 12 we get ,
`(5)^2 = a^2 +b^2 - 2 xx 12`
`5 xx 5 = a^2 +b^2 - 2 xx 12`
`25 = a^2 +b^2 -24`
By transposing – 24 to left hand side we get
`25 + 24 = a^2 +b^2`
`49 = a^2 +b^2`
Hence the value of `a^2 +b^2` is 49.
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
`[x-2/3y]^3`
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Write in the expanded form:
`(a + 2b + c)^2`
Simplify: `(a + b + c)^2 - (a - b + c)^2`
If a + b = 8 and ab = 6, find the value of a3 + b3
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Evaluate: (2a + 0.5) (7a − 0.3)
Evaluate: (9 − y) (7 + y)
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Evaluate: 203 × 197
Expand the following:
(2p - 3q)2
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
Find the squares of the following:
(2a + 3b - 4c)
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If p + q = 8 and p - q = 4, find:
pq
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.