Advertisements
Advertisements
प्रश्न
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.
उत्तर
Given, area of rectangle = 4a2 + 6a – 2a – 3
= 4a2 + 4a – 3 ...[By splitting middle term]
= 2a(2a + 3) – 1(2a + 3)
= (2a – 1)(2a + 3)
Hence, possible length = 2a – 1 and breadth = 2a + 3
APPEARS IN
संबंधित प्रश्न
Factorise the following:
64m3 – 343n3
Factorise:
27x3 + y3 + z3 – 9xyz
Write in the expanded form: `(x/y + y/z + z/x)^2`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Simplify of the following:
(x+3)3 + (x−3)3
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
Evalute : `( 7/8x + 4/5y)^2`
If a + b = 7 and ab = 10; find a - b.
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Expand the following:
`(1/x + y/3)^3`