Advertisements
Advertisements
प्रश्न
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
विकल्प
4
- \[\frac{17}{4}\]
- \[\frac{13}{4}\]
- \[\frac{1}{4}\]
उत्तर
In the given problem, we have to find the value of `x+1/x`
Given `x- 1/x = 15/4`
We shall use the identity `(a-b)^2 = a^2 +b^2 - 2ab`
Here putting`x-1/x =15/4`,
`(x-1/x)^2 = x^2 +1/x^2 -2 (x xx 1/x)`
`(15 /4)^2 = x^2 +1/x^2 -2 (x xx 1/x)`
`225/16 = x^2 +1/x^2`
`225/16 +2 = x^2 +1/x^2`
`225/16 + (2 xx 16) /(1 xx 16) = x^2 +1/x^2`
`(225+32)/16 = x^2 +1/x^2`
`257/16 = x^2 +1/x^2`
Substitute `257/16 = x^2 +1/x^2` in `(a+b)^2 = a^2 +b^2 +2ab` we get,
`(x+1/x)^2 = (x)^2 + (1/x)^2 +2 (x xx 1/x)`
`(x+1/x)^2 = (x)^2 + (1/x)^2 + 2 xx x xx 1/x`
`(x+1/x)^2 = x^2 +1/x^2 +2`
`(x+1/x)^2 = 257/16+2`
`(x+1/x)^2 = 257/16 + (2 xx 16)/(1 xx 16)`
`(x+1/x^2 )^2= (257+32)/16`
`(x+1/x)^2 = 289/16`
`(x+1/x) xx (x+1/x) = (17 xx 17)/(4 xx 4)`
`(x+1/x) = 17/4`
Hence the value of `x+1/x` is `17/4`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
104 × 96
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
If a + b = 10 and ab = 21, find the value of a3 + b3
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
Evaluate: (9 − y) (7 + y)
Expand the following:
(m + 8) (m - 7)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`
Expand the following:
(–x + 2y – 3z)2
Expand the following:
`(4 - 1/(3x))^3`